Islet-1 May Function as an Assistant Factor for Histone Acetylation and Regulation of Cardiac Development-Related Transcription Factor Mef2c Expression
نویسندگان
چکیده
OBJECTIVE Islet-1 is an important transcription factor for cardiac development through mediating extensive interactions between DNA and proteins. The present study was to investigate the role of Islet-1 in regulating the expression of cardiac development-related transcription factors and mechanism. METHODS AND RESULTS The expression of Islet-1 and histone acetylases (HATs) subtype p300 was determined in newborn mouse hearts and mouse embryonic hearts at different development stages using Western blot. The expression of Islet-1 and cardiac development-related transcription factors Mef2c, GATA4 and Tbx5 as well as histone H3 acetylation level were determined in cardiac progenitor cells with and without transfection of Islet-1 interference RNA (RNAi) in lentivirus using PCR and Western blot. Islet-1 peak expression occurred on day E14.5 in mouse embryonic heart, and was present in the promoter regions of Mef2c, GATA4 and Tbx5 that were precipitated with p300 antibody. When Islet-1 was inhibited with specific RNAi in cardiac progenitor cells, the expression of Mef2c and Tbx5, but not GATA4, was significantly suppressed along with selective reduction in histone H3 acetylation in the promoter region of Mef2c, but not GATA4 and Tbx5. The level of Mef2c DNA, not GATA4 and Tbx5, in the complex associated with p300 was significantly decreased in the cells with Islet-1 knockdown. CONCLUSIONS These data suggested that Islet-1 might function as an assistant factor that was involved in the regulation of histone acetylation and Mef2c expression via assisting p300 on specifically targeting the promoter of Mef2c.
منابع مشابه
Epigallocatechin gallate reverses cTnI‐low expression‐induced age‐related heart diastolic dysfunction through histone acetylation modification
Cardiac diastolic dysfunction (CDD) is the most common form of cardiovascular disorders, especially in elderly people. Cardiac troponin I (cTnI) plays a critical role in the regulation of cardiac function, especially diastolic function. Our previous studies showed that cTnI-low expression induced by histone acetylation modification might be one of the causes that result in diastolic dysfunction...
متن کاملHDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor.
Histone acetylation plays an important role in regulating chromatin structure and thus gene expression. Here we describe the functional characterization of HDAC4, a human histone deacetylase whose C-terminal part displays significant sequence similarity to the deacetylase domain of yeast HDA1. HDAC4 is expressed in various adult human tissues, and its gene is located at chromosome band 2q37. HD...
متن کاملEpigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress.
Experimental evidence indicates that shear stress (SS) exerts a morphogenetic function during cardiac development of mouse and zebrafish embryos. However, the molecular basis for this effect is still elusive. Our previous work described that in adult endothelial cells, SS regulates gene expression by inducing epigenetic modification of histones and activation of transcription complexes bearing ...
متن کاملGSK3β is a negative regulator of the transcriptional coactivator MAML1
Glycogen synthase kinase 3beta (GSK3beta) is involved in several cellular signaling systems through regulation of the activity of diverse transcription factors such as Notch, p53 and beta-catenin. Mastermind-like 1 (MAML1) was originally identified as a Notch coactivator, but has also been reported to function as a transcriptional coregulator of p53, beta-catenin and MEF2C. In this report, we s...
متن کاملThe effect of aspirin on the interaction of histone 05 and 05-DNA
The linker histones (H1 or H5) which play a key role in the folding of chromatin, are general repressors of gene expression. Nuclei of the mature chicken erythrocytes (and in some mammalian cells) contain both of them. Although the interaction of H5 with DNA is stronger than that of H1, it does not prevent the transcription of some erythroid-specific genes. It has been shown that some modificat...
متن کامل